Quadrature Formulas Using Derivatives

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature Formulas on Spheres Using Scattered Data

For the unit sphere embedded in a Euclidean space, we obtain quadrature formulas that are exact for spherical harmonics of a fixed order, have nonnegative weights, and are based on function values at scattered points (sites). The number of scattered sites required is comparable to the dimension of the space for which the quadrature formula is required to be exact. As a part of the proof, we der...

متن کامل

Anti-Gaussian quadrature formulas

An anti-Gaussian quadrature formula is an (n+ 1)-point formula of degree 2n− 1 which integrates polynomials of degree up to 2n+ 1 with an error equal in magnitude but of opposite sign to that of the n-point Gaussian formula. Its intended application is to estimate the error incurred in Gaussian integration by halving the difference between the results obtained from the two formulas. We show tha...

متن کامل

Stochastic Quadrature Formulas

A class of formulas for the numerical evaluation of multiple integrals is described, which combines features of the Monte-Carlo and the classical methods. For certain classes of functions—defined by smoothness conditions—these formulas provide the fastest possible rate of convergence to the integral. Asymptotic error estimates are derived, and a method is described for obtaining good a posterio...

متن کامل

On Birkhoff Quadrature Formulas

In an earlier work the author has obtained new quadrature formulas (see (1.3)) based on function values and second derivatives on the zeros of nn(i) as defined by (1.2). The proof given earlier was quite long. The object of this paper is to provide a proof of this quadrature formula which is extremely simple and indeed does not even require the use of fundamental polynomials of (0,2) interpolat...

متن کامل

Gaussian quadrature rules using function derivatives

Abstract: For finite positive Borel measures supported on the real line we consider a new type of quadrature rule with maximal algebraic degree of exactness, which involves function derivatives. We prove the existence of such quadrature rules and describe their basic properties. Also, we give an application of these quadrature rules to the solution of a Cauchy problem without solving it directl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1965

ISSN: 0025-5718

DOI: 10.2307/2003683